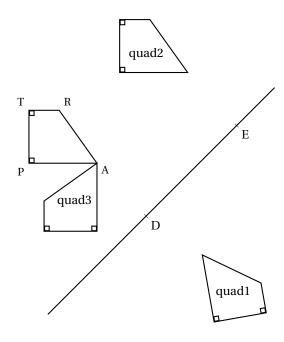
∽ Corrigé du brevet des collèges Polynésie 25 juin 2021 ∾

Durée: 2 heures

Exercice 1 22 points

1. Sur la figure ci-dessous, chacun des quadrilatères quad1, quad2 et quad3 est l'image du quadrilatère TRAP par une transformation.



- a. Le quadrilatère quad1 est l'image du quadrilatère TRAP par la transformation numéro 6
- b. Le quadrilatère quad2 est l'image du quadrilatère TRAP par la transformation numéro 1
- c. Le quadrilatère quad3 est l'image du quadrilatère TRAP par la transformation numéro 2

2.
$$(2x-3)(-5+2x)-4+6x=-10x+4x^2+15-6x-4+6x=4x^2-10x+11$$
.

3. Un produit de facteurs est nul si l'un des facteurs est nul, donc :

$$(x-6)(5x-2) = 0$$
 si $x-6 = 0$ ou $5x-2 = 0$ soit :
 $x = 6$ ou $5x = 2$ et enfin $x = 6$ ou $x = \frac{2}{5} = \frac{4}{10} = 0,4$.
 $S = \{0,4;6\}$.

4. a. +
$$1386 = 9 \times 154 = 9 \times 14 \times 11 = 2 \times 3^2 \times 7 \times 11;$$

+ $1716 = 6 \times 286 = 6 \times 2 \times 143 = 6 \times 2 \times 13 \times 11 = 2^2 \times 3 \times 11 \times 13.$
b. $\frac{1386}{1716} = \frac{2 \times 3^2 \times 7 \times 11}{2^2 \times 3 \times 11 \times 13} = \frac{3 \times 7}{2 \times 13} = \frac{21}{26}.$

5. Voir l'annexe.

Exercice 2 16 points

1. La probabilité de tirer un jeton noir dans la boîte C est égale à $\frac{50}{350+50} = \frac{50}{400} = \frac{50 \times 1}{50 \times 8} = \frac{1}{8}$.

- 2. La probabilité de tirer un jeton noir dans la boîte A est égale à $\frac{1}{10} = 0,1$; la probabilité de tirer un jeton noir dans la boîte B est égale à $\frac{15}{100} = 0,15$ et La probabilité de tirer un jeton noir dans la boîte C est égale à $\frac{1}{8} = 0,125$. Comme 0,1 < 0,125 < 0,15, Maxime a intérêt à choisir la boîte B.
- **3.** On a pour *n* jetons en tout : 0, 15 = $\frac{15}{n}$ soit 0, 15 n = 18 ou n = $\frac{18}{0,15}$ = 120. Il y a 120 jetons dans la boîte B dont 18 noirs.
- **4.** Si on ajoute b jetons blancs dans la boîte C, on a donc : $\frac{50+10}{350+50+10+b} = \frac{1}{8} \text{ ou } \frac{60}{410+b} = \frac{1}{8}, \text{ d'où on déduit : } 8 \times 60 = 410+b \text{ ou } 480 = 410+b \text{ et } b = 480-410 = 70. \text{ Il faut ajouter } 70 \text{ jetons blancs.}$

Exercice 3 21 points

1. On a $AC^2 + CB^2 = 8^2 + 15^2 = 64 + 225 = 289$ et $AB^2 = 17^2 = 289$.

Donc 64 + 225 = 289 ou encore $AC^2 + CB^2 = AB^2$: d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en C.

- **2.** En prenant comme base [AC] et comme hauteur [BC], on a : $\mathcal{A}(ACB) = \frac{8 \times 15}{2} = 4 \times 15 = 60 \text{ (cm}^2\text{)}.$
- 3. En utilisant par exemple la tangente, on a $\tan \widehat{BAC} = \frac{BC}{AC} = \frac{15}{8} = 1,875$.

La calculatrice donne $\tan^{-1}(1,875) \approx 61,92$, soit 62° au degré près.

 $\widehat{BAC} \approx 62^{\circ}$.

4. Puisque \widehat{ACB}) = 90°, alors l'angle opposé \widehat{ECD} = 90° : le tri- A angle DCE est donc rectangle en C.

D'après le théorème de Pythagore :

$$DC^2 + CE^2 = DE^2$$
, soit $DC^2 = DE^2 - CE^2 = 13^2 - 12^2 = 169 - 144 = 25 = 5^2$.

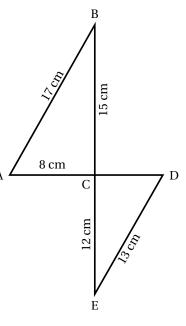
On a donc DC = 5 (cm).

Le périmètre du triangle CDE est donc égal à :

$$p = DC + CE + ED = 5 + 12 + 13 = 30$$
 (cm).

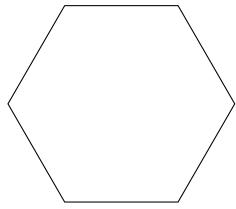
5. On a $\tan \widehat{CDE} = \frac{CE}{CD} = \frac{12}{5} = 2,4.$

Donc $\widehat{BAC} \neq \widehat{DCE}$ et par conséquent $\widehat{BAC} \neq \widehat{DCE}$: les angles \widehat{BAC} et \widehat{DCE} ne sont pas alternes-internes, donc les droites (AB) et (DE) ne sont pas parallèles.



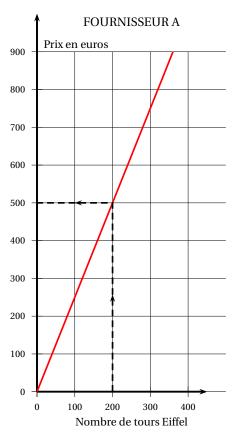
Exercice 4 19 points

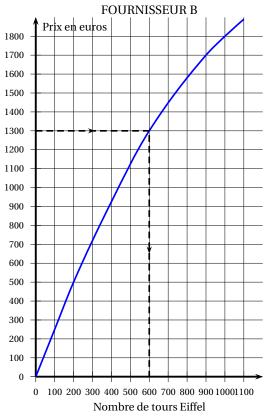
1.



- 2. La variable est « Longueur » qui correspond à la longueur du côté de l'hexagone tracé par par le bloc Motif.
- **3.** On dessine quatre hexagones après s'être déplacé vers la droite en augmentant à chaque fois la longueur du côté : c'est donc la figure 2 qui est produite.
- **4.** Il suffit de garder la taille de l'hexagone dessiné par le Motif : il suffit donc de supprimer la ligne 9.
 - Dans le programme il faut à la ligne 5 mettre : répéter 6 fois.
- 5. Pour obtenir un carré il faut :
 - + répéter 4 fois (ligne C);
 - + tourner de 90° (ligne E).

Exercice 5 22 points





- 1. Par lecture graphique, avec la précision qu'elle permet, et sans justification,
 - a. On lit sur le graphique que 200 tours Eiffel chez le fournisseur A coûtent 500 €.
 - **b.** On lit sur le graphique qu'avec 1 300 euros chez le fournisseur B on peut avoir 600 tours Eiffel.
- **2.** + La représentation graphique du prix à payer chez le fournisseur A est une droite contenant l'origine : c'est donc la représentation d'une fonction linéaire.
 - + La représentation graphique du prix à payer chez le fournisseur B n'est pas une droite contenant l'origine : ce n'est donc pas la représentation d'une fonction linéaire; le prix n'est pas proportionnel au nombre de tours Eiffel achetées.
- **3. a.** On sait que f(x) = ax avec $a \in \mathbb{R}$; comme $f(200) = a \times 200 = 500$, on déduit $a = \frac{500}{200} = 2,5$. On a donc pour $x \ge 0$, y = f(x) = 2,5x.
 - **b.** $f(1000) = 2.5 \times 1000 = 2500 \ (\text{@}).$
 - **c.** + Avec le fournisseur A il faut payer f(1000) = 2500 (€).
 - + Avec le fournisseur B il faut payer d'après le graphique 1800 (€). C'est lui le moins cher.
- 4. a. Voit l'annexe à la fin.
 - **b.** Il faut résoudre l'équation dans ℕ:

$$150 + 2x = 580$$
, soit $2x = 430$ et $x = 215$.

Chez le fournisseur C on peut acheter 215 tours Eiffel pour 580 €.

c. 2,5x = 150 + 2x donne en ajoutant à chaque membre -2x:

0.5x = 150 et en multipliant par 2 :

x = 300.

2,5x est la prix à payer chez A pour acheter x tours Eiffel et 150 + 2x celui à payer chez C pour acheter ces x tours Eiffel.

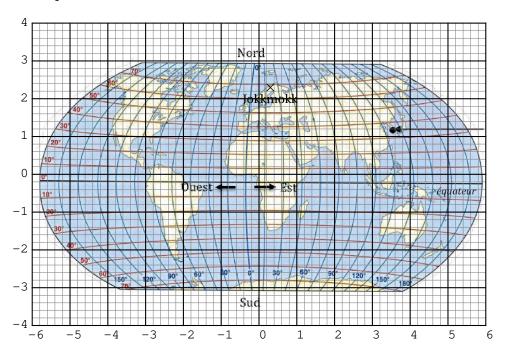
Résoudre l'équation 2.5x = 150 + 2x revient à chercher pour quelle quantité de tours Eiffel x, le prix à payer est le même chez les fournisseurs A et C.

La réponse est 300 tours Eiffel achetées chez les fournisseurs A et C coûteront 2,5 × 300 = 750 (€) ou $150 + 2 \times 300 = 150 + 600 = 750$ (€).

Polynésie 4 25 juin 2021

ANNEXE (à rendre avec la copie)

Exercice 1 – question 5



Exercice 5 – question 4. a.

Nombre de tours Eiffel	1	100	200	1000	х
Prix payé en euros avec le fournisseur C	152	350	550	2 150	150 + 2x